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Abstract. Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied
using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation.
An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-
algebra approach. The infrared multiphoton vibrational excitation of the DCN molecule is discussed as an
example.

PACS. 33.80.Wz Other multiphoton processes – 02.20.Sv Lie algebras of Lie groups

1 Introduction

Multiphoton processes play an important role in many ar-
eas of science, including photochemistry [1], fluorescence
imaging [2], and photoionization[3]. The study of atomic
and molecular multiphoton processes has attracted con-
siderable attention [4–6] in the past two decades because of
the development of high-power and short-pulse laser tech-
nology. Some theoretical and computational methods have
been developed for improvements in experiment, such as
the Coulter transformation method, and the Floquet the-
ory method [7–10]. In recent years, the Lie-algebra method
has been proposed to solve the question of polyatomic
molecular vibrations [11–15]. The multiphoton question
in intense laser fields of a diatomic molecule has been
successfully studied by the Lie-algebra method [16–20].
However, compared to the atomic case, the interaction of
molecules with intense laser fields is considerably more
complicated. Here, we introduce a theoretical method for
studying the infrared multiphoton excitation of the lin-
ear triatomic molecule. The quadratic anharmonic algebra
model [21] is used in this research. The explicit Lie-algebra
expression for the time-evolution operator is obtained by
using a Lie-algebraic approach, so that the problem of
solving the Schrödinger equation is reduced to that of solv-
ing a set of ordinary nonlinear differential equations, and
the computation time is greatly reduced.

The paper is organized as follows. In Section 2 we de-
rive the Hamiltonian of the system in the interaction pic-
ture within the semiclassical approximation (wherein the
molecule is treated quantum mechanically and the exter-
nal field is assumed to be classical), while the solution of
the time-evolution operator for the system, and the ex-
plicit Lie-algebra expression of the vibrational transition
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probability are also presented. In Section 3, we present an
example and give a brief discussion. Conclusions are then
given in Section 4.

2 Theory

2.1 The Hamiltonian of the system

The Hamiltonian of the system is

H = Hm + Hε, (1)

where Hm denotes the Hamiltonian of a free linear tri-
atomic molecule (ABC), which can be represented as two
coupled quadratic anharmonic oscillators [21]:

Hm = �ω0l

(
Â+

l Â−
l +

Î0l

2

)
+ �ω0r

(
Â+

r Â−
r +

Î0r

2

)

− λ
(
Â+

l Â−
r + Â+

r Â−
l

)
, (2)

where the ‘l’ and ‘r’ subscripts denote the left (A-B) and
right (B-C) bonds, respectively, ω0l and ω0r are the cor-
responding angular frequencies of the anharmonic oscil-
lators, and λ is the coupling coefficient between the two
chemical bonds and can be determined by the experimen-
tal values.

Â+
i and Â−

i (i = l, r) have the commutation rela-
tions [21][

Â−
i , Â+

i

]
= Î0i,

[
Î0i, Â

±
i

]
= ∓2x0iÂ

±
i , (3)

in which x0i = ai/(2
√

2miDi) is the anharmonicity pa-
rameter [21], where mi, ai and Di (i = l, r) denote the
reduced mass, Morse parameters and the dissociation en-
ergy, respectively.
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We assume that the molecule is in line with the di-
rection of the laser fields. Hε represents the interaction
between the molecule and the infrared laser field

Hε(Rl, Rr, t) = −µ(Rl, Rr)E0 cosωLt, (4)

where E0 and ωL are the laser amplitude and angular fre-
quency, respectively. The dipole moment µ(Rl, Rr) can
be expanded to first order at the equilibrium nuclear con-
figuration [22]

µ(Rl, Rr) ≈ µ0 +
(

∂µ

∂Rl

)
0

(
Rl − R0

l

)
+

(
∂µ

∂Rr

)
0

(
Rr − R0

r

)
= µ0 + µlx̂l + µrx̂r, (5)

where x̂l = Rl − R0
l , x̂r = Rr − R0

r , and R0
l and R0

r are
the equilibrium nuclear separations of AB and BC.

Then the quadratic anharmonic Lie-algebra Hamilto-
nian of the system is

Hm = �ω0l

(
Â+

l Â−
l +

Î0l

2

)
+ �ω0r

(
Â+

r Â−
r +

Î0r

2

)

− λ
(
Â+

l Â−
r + Â+

r Â−
l

)
− d1√

2

(
Â+

l + Â−
l

)

− d2√
2

(
Â+

r + Â−
r

)
− d0, (6)

where

d1 =
µl

al

√
�ω0l

2Dl
E0 cosωLt,

d2 =
µr

ar

√
�ω0r

2Dr
E0 cosωLt, d0 = µ0E0 cosωLt. (7)

In the interaction picture,

HI(t) = eiH0t/�Ve−iH0t/�

=
(
−d0

2
T̂0l − d1√

2
Blâl+ − d1√

2
Blâl−

)

+
(
−d0

2
T̂0r − d2√

2
Brâr+ − d2√

2
Brâr−

)
− λBlBr (âl+âr− + âr+âl−) , (8)

where T̂0i(i = l, r) is an identity operator and

H0 = �ω0l

(
Â+

l Â−
l +

Î0l

2

)
+ �ω0r

(
Â+

r Â−
r +

Î0r

2

)
,

V = −λBlBr

(
Â+

l Â−
r + Â+

r Â−
l

)
− d1√

2

(
Â+

l + Â−
l

)

− d2√
2

(
Â+

r + Â−
r

)
− d0, (9)

âi+ = eiω0itÎ0iÂ+
i , âi− = e−iω0itÎ0iÂ−

i ,

Bi = eiω0ix0it, B∗
i = e−iω0ix0it. (10)

When the commutation relations are satisfied, i.e.

[âi+, âi−] = −B∗
i
2Î0i,

[
Î0i, âi±

]
= ∓2x0iâi±,[

T̂0i, âi±
]

= 0,
[
T̂0i, Î0i

]
= 0, (11)

(T̂0l, Î0l, âl+, âl−) or (T̂0r, Î0r, âr+, âr−) can construct a
four-dimensional dynamic Lie algebra.

2.2 Time-evolution operator

The time-evolution operator UI satisfies the equation in
the interaction picture

i�
∂UI

∂t
= HIUI . (12)

HI can be divided into two parts:

HI = H1 + H2, (13)

H1 =
(
−d0

2
T̂0l − d1√

2
Blâl+ − d1√

2
Blâl−

)

+
(
−d0

2
T̂0r − d2√

2
Brâr+ − d2√

2
Brâr−

)
,

H2 = −λBlBr(âl+âr− + âr+âl−), (14)

and UI is written as

UI = U1U2, (15)

by putting equations (13) and (15) into equation (12),

i�
∂U1

∂t
= H1U1, (16)

i�
∂U2

∂t
= H′

2U2, (17)

where
H′

2 = U−1
1 H2U1. (18)

2.2.1 Time-evolution operator U1(t)

According to the theory of Lie-algebra, the time-
dependent evolution operator can be expressed by ele-
ments of Lie algebra [23,24]:

U1 = U1lU1r =
4∏

j=1

eX̃jĈjl

4∏
k=1

eỸkĈkr , (19)

U1l = eX̃1T̂0leX̃2 Î0leX̃3âl+eX̃4âl− ,

U1r = eỸ1T̂0reỸ2Î0r eỸ3âr+eỸ4âr− , (20)

where X̃j and Ỹk (j, k = 1, 2, 3, 4) are the time-dependent
complex coefficients.

U1l and U1r are obtained in the same way, and so we
will only describe the solving process of U1l.
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U1l satisfies the dynamic equation

i�
∂U1l(t, t0)

∂t
U−1

1l (t, t0) = H1l(t), U1l(t0, t0) = 1. (21)

By putting equation (20) into equation (21),

i�(η0T̂0l + η1Î0l + η2âl+ + η3âl− + η4Î0lâl+
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2
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2
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2
l−) =
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2
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2
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2
Blâl−, (22)

where
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∗
l
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l
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l
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2
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∗
l
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3
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2
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l
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2
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3X̃4

+ iω0lx
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2
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2
3X̃2

4B∗
l
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η9 = ix0lω0lX̃
2
4e4x0lX̃2 . (23)

T̂0l is an identity operator, and so one can first get the
following formula:

i�η0 = −d0

2
(24)

because the quadratic anharmonic creation and annihila-
tion operators Â± have the relations [11]

Î0i|Ni, vi〉 = (1 − 2x0iv0i)|Ni, vi〉,
Â+

i |Ni, vi〉 =
√

(1 − x0ivi)(vi + 1)|Ni, vi + 1〉,
Â−

i |Ni, vi〉 =
√

[1 − x0i(vi − 1)]vi|Ni, vi − 1〉, (25)

where i = l, r. By calculating matrix elements of the two
sides of equation (22) between 〈vl, 0, vr| and |vl, 0, vr〉, and
〈vl + 1, 0, vr| and |vl, 0, vr〉, one obtains

i�η1(1 − 2x0lvl) + i�η6(1 − 2x0lvl)2

+ i�η8B
∗
l
2[1 − x0l(vl − 1)]vl = 0,

(26)

i�η3 + i�η5[1 − x0l(vl − 1)] = − d1√
2
Bl, (27)

where |vl, 0, vr〉 = |Nl, vl〉|Nr, vr〉 [11], Nl = 1/x0l, and
Nr = 1/x0r. Here vl, vr are the vibrational quantum num-
bers.

By putting equation (23) into equations (24), (26)
and (27), the set of differential equations becomes

i� ˙̃X1 = −d0

2
,

i� ˙̃X2 = − d1√
2
BlX̃3e

−2x0lReX̃2

− 2ω01x0lX̃3X̃4

{
[1 − x0l(vl − 1)]vl

1 − 2x0lvl
+ 1

}
, (28)

i� ˙̃X4 =−d1√
2
Ble

−2x0lReX̃2 − 2ω01x0l[1 − 2x0l(vl − 1)]X̃4,

with the initial condition from equation (21) that

X̃j(t0, t0) = 0 (j = 1, 2, 3, 4). (29)

At the same time, the unitary condition of the time-
evolution operator must be satisfied, i.e.

U+
1l(t) = U−1

1l (t), (30)

U+
1l(t) = exp

(
X̃∗

4Bl
2âl+

)
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)
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)
exp
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)
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4B∗
l
2(1 + X̃∗

2x0l)

− 1
3
X̃∗

3 X̃∗2
4 B∗

l
2x0l(1 − X̃∗

2x0l)]âl+

+ [(1 − X̃∗
2x0l)X̃∗

3B∗
l
2]âl−

}
, (31)

U−1
1l (t) = exp(−X̃4âl−) exp(−X̃3âl+)

× exp(−X̃2Î0l) exp(−X̃1T̂0l)

=exp
{
−X̃1T̂0l+

[
X̃2+

1
2
(X̃2x0l−1)X̃3X̃4B

∗
l
2

]
Î0l
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− 1
3
X̃3X̃

2
4B∗

l
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}
, (32)

equations (30), (31) and (32) lead to the following rela-
tions

X̃3 =
L1 − iL2

F
Bl

2X̃∗
4 ,

ReX̃2 = − |X̃4|2
2 + 1

3x0l|X̃4|2
, (33)

where
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1
3
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]
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2
3
x0lReX̃2ImX̃2, (34)
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in which X̃j can be obtained by solving equa-
tions (28), (29) and (33), and the time-evolution operator
U1l(t) is as follows:

U1l(t) = exp
(
−i

d0

2�
tT̂0l

)

× exp

[(
− |X̃4|2

2 + 1
3x0l|X̃4|2
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)
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]
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[(
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F
X̃∗

4B∗
l
2

)
âl+

]
exp(X̃4âl−).

(35)

Similarly,

U1r(t) = exp
(
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)
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]

× exp

[(
L

′
1 − iL

′
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r
2

)
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]
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where

F
′
= [(1 − x0rReỸ2)2 + (x0rImỸ2)2]

[
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1
3
|Ỹ4|2x0r

]
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′
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[
1
3
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]
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′
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2
3
x0rReỸ2ImỸ2. (37)

Then the time-evolution operator U1(t) can be ex-
pressed as

U1(t) = exp
(
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d0

2�
tT̂0l

)

× exp

[(
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3x0l|X̃4|2

+ iImX̃2

)
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]
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[(
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F
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× exp
(
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)
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]
exp(Ỹ4âr−).
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2.2.2 Time-evolution operator U2(t)

By putting equation (38) into equation (18) and using the
rotating wave approximation,

H′
2 = U−1

1r U−1
1l H2U1lU1r

= Î0r(β1Î0l + β2âl+ + β3âl−)

+ Î0l(β4Î0r + β5âr+ + β6âr−)
+ β7âl+âr− + β8âr+âl−, (39)

where βk(t) (k = 1, 2, ...8) are
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l B∗
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∗
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∗
l
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2
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r
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+ exp[2(x0rỸ2 − x0lX̃2)]X̃3(1 + X̃3X̃4B
∗
l
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β4 = λB∗
l Br{exp[2(x0lX̃2−x0rỸ2)]X̃4(1+Ỹ3Ỹ4B

∗
r
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× X̃3Ỹ
2
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r
2x0r(1 + X̃3X̃4B

∗
l
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∗
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∗
r
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+ exp[2(x0rỸ2 − x0lX̃2)]X̃2
3 Ỹ4B

∗
l
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∗
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× X̃2
4 Ỹ3B

∗
l
2x0l(1 + Ỹ3Ỹ4B

∗
r
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+ exp[2(x0rỸ2 − x0lX̃2)]Ỹ4(1 + X̃3X̃4B
∗
l
2x0l)2}

β7 = −λBlBr{exp[2(x0lX̃2 − x0rỸ2)](1 + Ỹ3Ỹ4B
∗
r
2x0r)2
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3 Ỹ 2

4 B∗
l
2B∗

r
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l
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r
2x0lx0r

+ exp[2(x0rỸ2 − x0lX̃2)](1 + X̃3X̃4B
∗
l
2x0l)2}. (40)

U2(t) is so much smaller than U1(t) that we can obtain
U2(t) by using the Magnus approximation [25]

U2(t) = exp[Ω(t)], (41)

where Ω is an infinite series

Ω(t) =
∞∑

m=1

Ωm(t), (42)

in which Ωm denotes the integrals of m-fold multiple com-
mutators [26]. The first two terms of the Magnus operator
are

Ω1(t) = − i

�

∫ t

0

dt1Ĥ
′
2(t1), (43)

Ω2(t) =
1

2�2

∫ t

0

dt2

∫ t2

0

dt1[Ĥ
′
2(t1), Ĥ

′
2(t2)]. (44)
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Using equations (10) and (39), the first term is the follow-
ing expression

Ω1(t) = [α1(t) + α4(t)]Î0l Î0r + α2(t)Î0rÂ
+
l + α3(t)Î0rÂ

−
l

+α5(t)Î0lÂ
+
r + α6(t)Î0lÂ

−
r + α7(t)Â+

l Â−
r

+α8(t)Â+
r Â−

l , (45)

where the αk (k = 1, 2, ...8) are

α1(t) = − i

�

∫ t

0

β1(t1)dt1

α2(t) = − i

�

∫ t

0

β2(t1) exp(iω0lÎ0lt1)dt1

α3(t) = − i

�

∫ t

0

β3(t1) exp(−iω0lÎ0lt1)dt1

α4(t) = − i

�

∫ t

0

β4(t1)dt1

α5(t) = − i

�

∫ t

0

β5(t1) exp(iω0rÎ0rt1)dt1

α6(t) = − i

�

∫ t

0

β6(t1) exp(−iω0rÎ0rt1)dt1

α7(t) = − i

�

∫ t

0

β7(t1) exp[i(ω0lÎ0l − ω0r Î0r)t1]dt1

α8(t) = − i

�

∫ t

0

β8(t1) exp[i(ω0rÎ0r − ω0lÎ0l)t1]dt1. (46)

The total time-dependent evolution operator can be rep-
resented by using equations (38) and (43)

UI(t) = U1(t)U2(t)

= exp
(
−i

d0

2�
tT̂0l

)

× exp

[(
− |X̃4|2

2 + 1
3x0l|X̃4|2

+ iImX̃2

)
Î0l

]

× exp
[(
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F
X̃∗

4B∗
l
2

)
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]
exp (X̃4âl−)

× exp
(
−i
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2�
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)

× exp

[(
− |Ỹ4|2

2 + 1
3x0r |Ỹ4|2
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)
Î0r

]

× exp

[(
L

′
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′
2

F ′ Ỹ ∗
4 B∗

r
2

)
âr+

]
exp (Ỹ4âr−)

× exp {Ω1(t)}. (47)

2.3 Transition probability

The probability of transition from state |v0l, 0, v0r〉 to
state |vfl, 0, vfr〉 is

P0f (t) = |〈vfl, 0, vfr|UI(t)|v0l, 0, v0r〉|2, (48)

U1(t)|vl, 0, vr〉 =
∞∑

ml=0

X̃ml
4

√
[1 − x0l(vl − 1)]vl · · · [1 − x0l(vl − ml)](vl − ml + 1)

ml!

×
∞∑

nl=0

(X̃∗
4 )nl

√
[1 − x0l(vl − ml)](vl − ml + 1) · · · [1 − x0l(vl − ml + nl − 1)](vl − ml + nl)

nl!

×
(

L1 − iL2

F
B∗

l
2

)nl

exp {−iω0lml[1 − 2x0l(vl − ml)]t}

× exp

{[
− |X̃4|2

2 + 1
3x0l|X̃4|2

+ i(ImX̃2 + ω0lnlt)

]
[1 − 2x0l(vl − ml + nl)]

}

×
∞∑

mr=0

Ỹ mr
4

√
[1 − x0r(vr − 1)]vr · · · [1 − x0r(vr − mr)](vr − mr + 1)

mr!

×
∞∑

nr=0

(Ỹ ∗
4 )nr

√
[1 − x0r(vr − mr)](vr − mr + 1) · · · [1 − x0r(vr − mr + nr − 1)](vr − mr + nr)

nr!

×
(

L
′
1 − iL

′
2

F ′ B∗
r
2

)nr

exp {−iω0rmr[1 − 2x0r(vr − mr)]t}

× exp

{[
− |Ỹ4|2

2 + 1
3x0r|Ỹ4|2

+ i(ImỸ2 + ω0rnrt)][1 − 2x0r(vr − mr + nr)

]}

× exp
(
−i

d0

�
t

)
|vl − ml + nl, 0, vr − mr + nr〉 (49)
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Ω1(t)|v0l, 0, v0r〉 = [α1(t) + α4(t)](1 − 2x0lv0l)(1 − 2x0rv0r)|v0l, 0, v0r〉
+ α2(t)(1 − 2x0rv0r)

√
(1 − x0lv0l)(v0l + 1)|v0l + 1, 0, v0r〉

+ α3(t)(1 − 2x0rv0r)
√

[1 − x0l(v0l − 1)]v0l|v0l − 1, 0, v0r〉
+ α5(t)(1 − 2x0lv0l)

√
(1 − x0rv0r)(v0r + 1)|v0l, 0, v0r + 1〉

+ α6(t)(1 − 2x0lv0l)
√

[1 − x0r(v0r − 1)]v0r|v0l, 0, v0r − 1〉
+ α7(t)

√
(1 − x0lv0l)(v0l + 1)

√
[1 − x0r(v0r − 1)]v0r|v0l + 1, 0, v0r − 1〉

+ α8(t)
√

[1 − x0l(v0l − 1)]v0l

√
(1 − x0rv0r)(v0r + 1)|v0l − 1, 0, v0r + 1〉. (50)

During the computation, we found that the values of
αk (k = 1, 2, ...8) were all smaller than X̃j , Ỹk (j, k =
1, 2, 3, 4), and so we expand eΩ1(t) and take the first two
terms in order to save computational time

eΩ1(t) = 1 + Ω1(t) +
1
2
[Ω1(t)]2 +

1
3
[Ω1(t)]3 + · · ·, (51)

and then the explicit Lie-algebra expression for the vibra-
tional transition probability can be obtained by using the
following derivation

UI(t)|v0l, 0, v0r〉 = U1(t)U2(t)|v0l, 0, v0r〉
= U1(t)[1 + Ω1(t)]|v0l, 0, v0r〉. (52)

Firstly, by applying the relations of equations (10), (25)
and the well-known formula

exp (X̃iâi) =
∞∑

m=0

X̃m
i âm

i

m!
, (53)

the explicit expression of any state function acted on by
the time-evolution operator U1(t) can be given by equa-
tion (49).

Secondly, the following formula (Eq. (50)) is easily
obtained by using equations (25) and (45).

Then putting equations (49), (50) and (52) into equa-
tion (48), the explicit Lie-algebra expression of the vibra-
tional transition probability is obtained.

The long-time-averaged transition probability is
defined by

P 0f = lim
T→∞

1
T

∫ T

0

P0f (t)dt, (54)

while the long-time-averaged absorption energy spectra
are obtained using

〈ε(ω)〉 =
∑

f

P 0f (ω)εf , (55)

and the averaged number of photons absorbed by the
molecule can be calculated by

〈n(t)〉 =
∑

f

εf

�ωL
P0f (t). (56)

Table 1. Values of parameters for the DCN molecule in a.u.

bonds DC CN
m 3144 11780
ω0 0.01201 0.00889
x0 0.00824 0.00509
D 0.3644 0.4366
a 0.7889 1.0325
λ 0.000472

Fig. 1. The stretch-vibration energy diagrams for the first ten
excited states of DCN (v = vl + vr).

3 Example

3.1 The stretch-vibration spectrum of the DCN
molecule

The relevant spectral analysis [27] shows that the stretch-
vibration of DCN is more important than the bending
motion in its molecular vibrations. So only the stretch-
vibration spectrum is calculated here. The values of pa-
rameters suitable for DCN are given in Table 1 [28].

The first ten stretch-vibration energy levels have been
calculated in order to check the Hamiltonian (Eq. (2))
that was used. Figure 1 shows a structure similar to other
theoretical results [27]. The theoretical model of the linear
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Fig. 2. Time-dependent average number of photons absorbed
by DCN with E0 = 0.003 a.u. (I ≈ 0.32 TW/cm2). (a) ωL =
0.012 a.u. (2630 cm−1), the single-photon resonance, (b) ωL =
0.01075 a.u. (2360 cm−1), the seven-photon resonance.

triatomic molecule introduced here is appropriate, and so
it can be used to study the infrared multiphoton vibra-
tional excitation of DCN.

3.2 Resonant excitation probability

The dipole moment of the DCN molecule is given by using
equation (5) with experimental values [29]. We assume the
molecule to be in the ground state at t = 0. Figure 3 gives
the long-time-averaged absorption energy spectra plots of
the DCN molecule at different laser intensities. Figure 2
gives the averaged number of photons absorbed by the
molecule.

Based upon

N = (εN − ε0)/�ωN , (57)

where ωN is the resonant frequency, εN − ε0 is the en-
ergy gap between the ground state and the Nth excited
state [30], N -photons transition resonant frequencies can
be found in the curves of the long-time-averaged vibra-
tional transition probabilities as a function of external
field frequency. The frequency of the infrared laser field
is adjusted to obtain the highest peaks of the transition
probabilities from ωL = 0.007 a.u. to ωL = 0.013 a.u.

Figure 3 shows that as the laser intensity increases,
both the long-time-averaged absorption energies and the
resonant excitation peaks increase. Calculation of the vi-
brational transition probabilities shows that the highest
resonance excitation peak at different laser intensities be-
longs to different multiphoton resonances, which means
an efficient multiphoton resonance can be achieved only
under certain laser intensity. This result is consistent with
experiment [31].

The average number of photons absorbed by the
molecule have been studied at E0 = 0.003 a.u. At ωL =
0.012 a.u. and ωL = 0.01075 a.u., the single-photon and
the seven-photon resonant excitations are found; the cor-
responding curves of the time-dependent average number

Fig. 3. Long-time-averaged energy absorption spectra of DCN
at different laser intensities. (a) E0 = 0.003 a.u. (I ≈
0.32 TW/cm2), (b) E0 = 0.009 a.u. (I ≈ 2.84 TW/cm2), (c)
E0 = 0.015 a.u. (I ≈ 7.89 TW/cm2).

of photons absorbed by the molecule are given in Figure 2.
The curve follows a simple Rabi oscillation, and the vibra-
tional period is about 150 optical cycles (about 464 a.u. of
one optical cycle) in the single-photon resonance. Within
the Rabi cycle, the single-photon curves have cone-shaped
peaks and broad bases. However, the average number of
photons absorbed of the seven-photon resonance has split
peaks and a long periodical behavior, the period being
about 430 optical cycles. The multiphoton resonant exci-
tation is a long-time process. This result also agrees with
other relevant research [32].
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4 Conlusion

In this study, the Lie-algebra approach of studying the
infrared multiphoton vibrational excitation of the linear
triatomic molecule has been introduced. The explicit Lie-
algebra expressions for the time-evolution operator and
vibrational transition probabilities make the computation
clearer and easier. A simple example is given to explain
the method, and the results agree well with experiments
and other theoretical studies. Using this method to study
the infrared multiphoton excitation of the linear triatomic
molecules is effective. Many concrete examples can be
tackled as using this method, such as control of the multi-
photon vibrational excitation and dissociation in chirped
pulses. This is a current work in progress. A much richer
information of multiphoton processes is to be expected
if bend-mode excitation and rotations are taken into ac-
count. These considerations will be addressed in future
work.

This work is supported by the National Science Foundation of
China.
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